Clinically Significant Cardiovascular Drug Interactions

April 30, 2014
Michael A Militello, PharmD, BCPS
Cardiovascular Clinical Pharmacist
Introduction

• Drug interactions represent 3-5% of preventable in-hospital ADRs

• Drug interactions are a major contributor of patients seeking further medical care (ED visits and hospitalizations)

• While electronic medical records can help to minimize clinically significant drug interactions they are not fail safe
 – Alert fatigue
 – Determining the significance of interactions when alerted
Introduction

• Types of drug interactions
 – Pharmacokinetic interactions
 – Pharmacodynamic interactions
 – Pharmacogenetic interactions
 – Food-drug interactions
 – Drug-disease state interactions
Pharmacokinetic Drug Interactions

- Pharmacokinetics: How the body “handles” medications.
- Typical interactions occur that will either increase or decrease a medication when one or more are given together.
 - Absorption
 - Distribution
 - Metabolism
 - Excretion/Elimination

ADME
Cytochrome P450 Enzyme System

• Group of heme-containing enzymes

• Enzyme distribution
 – Liver
 – Gastrointestinal tract
 – Kidneys
 – Lungs
 – Brain
Cytochrome P450 Enzyme system

• Responsible for Phase I reactions
 – Oxidation reactions
 • Hydroxylation
 • Dealkylation
 • Oxidation
 – Reduction reactions
 • Azo- and Nitro-reduction
CYP Metabolism

• Drugs interact with the CYP450 system by being:
 – Substrates
 – Inhibitors
 – Inducers
Substrates

• Many medications are substrates for the CYP450 enzyme system
• Inhibition of this enzyme lead to increased levels of parent compound
• Inhibitors of a certain enzyme can also be metabolized through that same enzyme or another enzyme
Inhibitors of the CYP450

• Most commonly occurs as competitive binding
 — Competition depends on
 • Substrate affinity
 • Concentration of substrate
 • Half-life of inhibitor
 — Inhibition depends on:
 • Half-life of inhibitor
 • Time to steady state of the inhibitor
CYP2D6

• Genetic polymorphism
 – Extensive metabolizers
 – Poor metabolizers
 • 5-15 % of whites
 • 1-3 % African Americans and Asians
CYP2D6

• Inhibitors
 – Amiodarone, Propafenone, Quinidine
 – Fluoxetine, Paroxetine, Sertraline
 – Ritonivir
 – Haloperidol, Thioridazine
CYP2D6

• Substrates
 – Codeine
 – Flecainide, Mexiletine, Propafenone
 – Bisoprolol, Labetalol, Metoprolol, Pindolol, Propranolol, Timolol
CYP2C9 isoenzymes

• Genetic polymorphism
 – 20% of Asians and African Americans are poor metabolizers (PMs) whereas only 3-5% of Caucasians are PMs
CYP2C9 isoenzymes

• Inhibitors
 – Amiodarone
 – Cimetidine
 – Fluvoxamine
 – Fluconazole, ketoconazole
 – Omeprazole
CYP2C9 isoenzymes

• Substrates
 – Losartan
 – Phenytoin
 – S-warfarin (more pharmacologically active)
Inducers of the CYP450 system

- Phenytoin (3A4, 2D6, 2C9)
- Phenobarbital (3A4, 2D6, 2C9)
- Carbamazepine (3A4, 2D6, 2C9)
- Rifampin (3A4, 2D6, 2C9)
- Ritonavir (2D6)
- Smoking (1A2)
Drug Transport

• P-glycoprotein
 – Energy-dependent trans-membrane efflux pump
 • Intestines
 • Hepatocytes
 • Kidney proximal tubule
 • Blood-brain barrier
 – A number of drugs are substrates (cancer agents, digoxin, many of the newer oral anticoagulants, cyclosporine, protease inhibitors)
 – Encoded by the multidrug resistance gene (MDR-1) also called ABCB1 gene
P-glycoprotein

• Inhibitors
 – In the intestines can increase the bioavailability of certain medications
 – In the intestines and liver may lead to decreased elimination of medications

• Inducers

• Many of the medications that alter P-glycoprotein functions also can alter CYP enzyme function
P-glycoprotein

• Inhibitors
 – Clarithromycin
 – Cyclosporine
 – Erythromycin
 – HIV protease inhibitors
 – Itraconazole
 – Ketoconazole
 – Quinidine
 – Verapamil

• Inducers
 – Rifampin
 – St. John’s wort
Pharmacodynamic Drug Interactions

• Pharmacodynamics: How a drug affects the body

• Typical interactions will have either an enhanced or blunted pharmacologic effect of a medication when on or more are used together
Pharmacogenomic Drug Interactions

• Pharmacogenomic: Genetic coding of receptors, metabolizing enzymes, transporters etc.

• Alterations in a patient's genetic coded can modify the pharmacokinetics or pharmacodynamics of isolated medications.

• There are a number of identified pharmacogenomic alterations that can modify pharmacologic response
 — However, little data to help us clinically use this data.
Food Drug Interactions

• Certain medications can have alterations in pharmacology effect by addition or subtraction of certain foods

• Some foods may modify the ADME of pharmacokinetics
 – Cations and ciprofloxacin
 – Grapefruit juice and simvastatin
 – Vitamin K rich foods and warfarin
Disease State Drug Interactions

• Certain medications can be considered drug interactions with certain disease states
• These interactions can be real or anticipated
• Examples include:
 – Dronedarone and heart failure
 – Flecainide and structural heart disease
 – Cilostazol and heart failure
Individual Drug Interactions
Drug Interactions

• Amiodarone
 — Pharmacokinetic
 • Increase warfarin effects
 • Increases levels of digoxin, procainamine, quinidine, cyclosporine (CSA), phenytoin, flecainide, mexilite, propafenone, simvastatin, lovastatin, tacrolimus, etc.
 — Pharmacodynamic
 • Verapamil, diltiazem, beta-blockers, other QT-prolonging medications
Drug Interactions

Warfarin

– Pharmacokinetic
 • Drugs that increase INR
 ▪ Amiodarone, quinidine +/-, propafenone
 ▪ Trimethoprim/sulfamethoxazole, erythromycin, metronidazole, other antibiotics
 ▪ Azole antifungals
 ▪ Cimetidine

– Pharmacokinetic
 • Drugs that decrease INR
 ▪ Barbiturates
 ▪ Carbamazepine
 ▪ Rifampin
 ▪ Phenytoin
 ▪ Cholestyramine (decreased bioavailability)
Drug Interactions

• Warfarin
 – Pharmacodynamic
 • Drugs that interfere with clotting hemostasis
 • ASA and other NSAIDS
 • Antiplatelet medications
Digoxin

— Pharmacokinetic
 • Increase levels
 ▪ Amiodarone, quinidine, propafenone, verapamil, diltiazem
 ▪ Erythromycin/Clarithromycin, tetracycline
 • Decrease levels
 ▪ Antacids, Sucralfate, Cholestyramine/Colestipol

— Pharmacodynamic
 • Medications that slow heart rate (Beta blockers and calcium channel blockers)
 • Medications that cause electrolyte depletion
 • Thiazide and loop diuretics
Dofetilide

- Pharmacokinetic Interaction
 - Inhibition of cation transport
 - Cimetidine
 - Hydrochlorothiazide
 - Prochlorperazine
 - Itraconazole
 - Ketoconazole
 - Trimethoprim alone or in combination
 - Megestrol
 - Verapamil
Dofetilide

• Pharmacodynamic Interactions
 – Medications that prolong the QT interval
 – Haloperidol
 – Phenothiazine class antiemetics and antipsychotic medications
 – Certain atypical antipsychotic medications
 – Methadone
 – Many others
Newer Oral Anticoagulants

• Direct Thrombin Inhibitor
 – Dabigatran

• Factor Xa Inhibitors
 – Rivaroxaban
 – Apixaban
Dabigatran (Pradaxa)

• Renal elimination is the major route of elimination for dabigatran, however P-gp inhibition or induction may alter the systemic exposure

• Dronedarone and ketoconazole should be used cautiously with dabigatran if the patient has a creatinine clearance between 30 and 50 ml/min

• Not all P-gp inhibitors will have the same effect and may be safe (verapamil, amiodarone, quinidine)

• P-gp inducer rifampin should be avoided with dabigatran.
Rivaroxaban (Xeralto)

- Rivaroxaban is a substrate for the CYP 3A4 and P-gp and partially cleared through renal elimination
- Strong CYP 3A4 and P-glycoprotein inhibitors can increase the exposure of rivaroxaban.
 - Some combinations have been resulted in a 150 to 160% increase in drug exposure when given concomitantly.
- Strong CYP 3A4 and P-glycoprotein inducers can decrease the exposure of rivaroxaban.
Rivaroxaban (Xeralto)

• Combinations to avoid
 – Pharmacokinetic
 • Increased levels (Strong 3A4 and P-gp inhibitors)
 ▪ Ketoconazole, and fluconazole (suspect others as well)
 ▪ Ritonavir
 ▪ Clarithromycin and erythromycin
 • Decreased levels
 • Rifampin
 • Phenytoin
Rivaroxaban (Xeralto)

• Patients with renal dysfunction defined as a creatinine clearance between 15 ml/min – 80 ml/min should not receive medications that are moderate inhibitors of 3A4 and P-gp
 – Amiodarone, diltiazem, verapamil, cimetidine and erythromycin
Apixaban (Eloquis)

• Like rivaroxaban, apixaban is a substrate for CYP3A4 and P-gp and strong inhibitors will increase the levels of apixaban.

• Also, inducers will decrease the levels of apixaban

• Drugs like ketoconazole, itraconazole, ritonivir or clarithromycin will require a dosing reduction or discontinuation of therapy.
Oral P2Y12 Inhibitors

- Clopidogrel
- Prasugrel
- Ticagrelor
Clopidogrel (Plavix)

- Metabolized in a two step process to an active metabolite
Clopidogrel

- Interaction with omeprazole and other PPIs has been controversial
- There is a known pharmacokinetic interaction
- Limited data suggesting clinical relevance of interaction
- However, package insert considers combination of omeprazole or esomeprazole to be contraindicated.
Prasugrel (Effient)

• Most interactions are pharmacodynamic in nature
 – Agents that increase the risk of bleeding
 • Anticoagulants
 • NSAIDS
Ticagrelor (Brillinta)

• Pharmacokinetic
 – Strong 3A4 inhibitors
 • May increase ticagrelor levels and decrease the levels of the active metabolite
 ▪ Clarithromycin
 ▪ Itraconazole, ketoconazole, and posaconazole
 ▪ Many of the Antiretroviral protease inhibitors
 ▪ Nefazodone
 ▪ Nicardipine
 – Strong 3A4 inducers

• Pharmacodynamic
 – Medications that increase the risk of bleeding
Drug Interaction Resources/References

- Lexi-Comp Interactions
- Micromedex Interactions
- Epic (FirstDatabank)
- Prescribing Information
- Literature search
- Pharmacist
Summary

• Drug interactions can occur with absorption, distribution, metabolism, and excretion.

• Phase I and Phase II reactions are key for the metabolism of medications.

• It is important to identify substrate (how it is metabolized and if a prodrug) and if any enzyme inducers or inhibitors will be given concurrently.

• Pharmacogenetics/genomics may play a role; however, need to consider the feasibility and do the results tell the entire story.

• Key tertiary references to evaluate drug interactions are Lexi-Comp Interactions and Micromedex.
Thank you for your time and attention